1. Given the series $5+4+\frac{16}{5}+\frac{64}{25}+\ldots$
a. Write the series as a sum
b. Find the sum if convergent
2. Write the MacLaurian Series for each of the following. Include the general term.
a. $f(x)=\sin x$
b. $f(x)=\tan ^{-1} x$
3. Let $f(x)=\sin (x)$
a. Use the MacLaurin polynomial of order 5 (3 nonzero terms) for $f(x)$ to approximate $\sin (0.2)$
b. Find the Lagrange Error Bound of the polynomial if $0 \leq x \leq 0.2$
4. Write each function as a power series in summation form:
a. $f(x)=\frac{x}{1+x^{2}}$
b. $f(x)=\frac{5}{x}$
5. Let $g(x)=\frac{\cos \left(x^{3}\right)}{2 x}$. Find each of the following.
a. Write the $1^{\text {st }}$ four nonzero terms and the general term for the Maclaurin series for $\cos \mathrm{x}$.
b. Write the $1^{\text {st }}$ four nonzero terms and the general term for the Maclaurin series for $g(x)$.
6. Let $f(x)$ be a function that has derivatives of all orders for all real numbers.

If $f(0)=9, f^{\prime}(0)=5, f^{\prime \prime}(0)=-4$, and $f^{\prime \prime \prime}(0)=36$, write the third order Taylor polynomial for $f(x)$ at $\mathrm{x}=0$ and use it to approximate $f(0.3)$.
7. Find the function for each power series and give the interval of convergence
a. $\sum_{n=0}^{\infty} 2(x-1)^{n}$
b. $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{x}{4}\right)^{n-1}$
8. Given that $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots+\frac{(-1)^{n-1} x^{n}}{n}$ is a power series representation for $\ln (1+x)$. Find a power series representation for $x^{2} \ln \left(1+x^{3}\right)$, including a general term for n .
9. Let $f(x)$ be a function that is continuous and differentiable at all real numbers and let $f(2)=3, f^{\prime}(2)=5$, and $f^{\prime \prime}(2)=4$
a. Write a $2^{\text {nd }}$ order Taylor polynomial for $f(x)$ centered at $\mathrm{a}=2$.
b. Given $g^{\prime}(x)=f(x)$ and $g(0)=1$, write a $3^{\text {rd }}$ order Taylor polynomial for $g(x)$ centered at $\mathrm{a}=2$.
c. If $f^{\prime \prime \prime}(x) \leq 7$ for all x , find the Lagrange error bound for the approximation of $f(2.2)$
10. Find the Taylor polynomial of order 3 generated by $f(x)=\cos (x)$ at $x=\frac{\pi}{3}$.
11. Given the Maclaurin series for $f(x)$ is $2 x+3 x^{2}+\frac{4 x^{3}}{2}+\frac{5 x^{4}}{6}+\ldots+\frac{(n+1) x^{n}}{(n-1)!}+\ldots$
a) Find $f^{\prime \prime}(0)$
b) Let $g(x)=x f^{\prime}(x)$. Write the Maclaurin series for $g(x)$. Include a general term for n .
c) Let $h(x)=\int_{0}^{x} f(t) d t$. Write the Maclaurin series for $h(x)$. Include a general term for n .

